Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(Suppl 1): 739, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255495

RESUMO

Oil and gas development off northeastern Sakhalin Island, Russia, has exposed the western gray whale population on their summer-fall foraging grounds to a range of anthropogenic activities, such as pile driving, dredging, pipeline installation, and seismic surveys. In 2015, the number of seismic surveys within a feeding season surpassed the level of the number and duration of previous seismic survey activities known to have occurred close to the gray whales' feeding ground, with the potential to cause disturbance to their feeding activity. To examine the extent that gray whales were potentially avoiding areas when exposed to seismic and vessel sounds, shore-based teams monitored the abundance and distribution of gray whales from 13 stations that encompassed the known nearshore feeding area. Gray whale density was examined in relation to natural (spatial, temporal, and prey energy) and anthropogenic (cumulative sound exposure from vessel and seismic sounds) explanatory variables using Generalized Additive Models (GAM). Distance from shore, water depth, date, and northing explained a significant amount of variation in gray whale densities. Prey energy from crustaceans, specifically amphipods, isopods, and cumaceans also significantly influenced gray whale densities in the nearshore feeding area. Increasing cumulative exposure to vessel and seismic sounds resulted in both a short- and longer-term decline in gray whale density in an area. This study provides further insights about western gray whale responses to anthropogenic activity in proximity to and within the nearshore feeding area. As the frequency of seismic surveys and other non-oil and gas anthropogenic activity are expected to increase off Sakhalin Island, it is critical to continue to monitor and assess potential impacts on this endangered population of gray whales.


Assuntos
Monitoramento Ambiental , Baleias , Animais , Baleias/fisiologia , Estações do Ano , Coleta de Dados , Água
2.
Environ Monit Assess ; 194(Suppl 1): 740, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255529

RESUMO

Gray whales utilizing their foraging grounds off northeastern Sakhalin Island, Russia, have been increasingly exposed to anthropogenic activities related to oil and gas development over the past two decades. In 2015, four seismic vessels, contracted by two operators, conducted surveys near and within the gray whale feeding grounds. Mitigation and monitoring plans were developed prior to the survey and implemented in the field, with real-time data transfers to assist the implementation of measures aimed at minimizing impacts of acoustic exposure. This study examined the behavioral response of gray whales relative to vessel proximities and sounds generated during seismic exploration. Five shore-based teams monitored gray whale behavior from 1 June to 30 September using theodolite tracking and focal follow methodologies. Behavioral data were combined with acoustic and benthic information from studies conducted during the same period. A total of 1270 tracks (mean duration = 0.9 h) and 401 focal follows (1.1 h) were collected with gray whales exposed to sounds ranging from 59 to 172 dB re 1 µPa2 SPL. Mixed models were used to examine 13 movement and 10 respiration response variables relative to "natural," acoustic, and non-acoustic explanatory variables. Water depth and behavioral state were the largest predictors of gray whale movement and respiration patterns. As vessels approached whales with increasing seismic/vessel sound exposure levels and decreasing distances, several gray whale movement and respiration response variables significantly changed (increasing speed, directionality, surface time, respiration intervals, etc.). Although the mitigation measures employed could have reduced larger/long-term responses and sensitization to the seismic activities, this study illustrates that mitigation measures did not eliminate behavioral responses, at least in the short-term, of feeding gray whales to the activities.


Assuntos
Comportamento Alimentar , Baleias , Animais , Baleias/fisiologia , Estações do Ano , Monitoramento Ambiental/métodos , Acústica , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...